Os elementos do conjunto verdade de uma equação são chamados raízes da equação.
Para verificar se um número é raiz de uma equação, devemos obedecer à seguinte seqüência:
Substituir a incógnita por esse número.
Determinar o valor de cada membro da equação.
Verificar a igualdade, sendo uma sentença verdadeira, o número considerado é raiz da equação.
Exemplos:
Verifique quais dos elementos do conjunto universo são raízes das equações abaixo, determinando em cada caso o conjunto verdade.
Resolva a equação x - 2 = 0, sendo U = {0, 1, 2, 3}.
Para x = 0 na equação x - 2 = 0 temos: 0 - 2 = 0 => -2 = 0. (F)
Para x = 1 na equação x - 2 = 0 temos: 1 - 2 = 0 => -1 = 0. (F)
Para x = 2 na equação x - 2 = 0 temos: 2 - 2 = 0 => 0 = 0. (V)
Para x = 3 na equação x - 2 = 0 temos: 3 - 2 = 0 => 1 = 0. (F)
Verificamos que 2 é raiz da equação x - 2 = 0, logo V = {2}.
Resolva a equação 2x - 5 = 1, sendo U = {-1, 0, 1, 2}.
Para x = -1 na equação 2x - 5 = 1 temos: 2 . (-1) - 5 = 1 => -7 = 1. (F)
Para x = 0 na equação 2x - 5 = 1 temos: 2 . 0 - 5 = 1 => -5 = 1. (F)
Para x = 1 na equação 2x - 5 = 1 temos: 2 . 1 - 5 = 1 => -3 = 1. (F)
Para x = 2 na equação 2x - 5 = 1 temos: 2 . 2 - 5 = 1 => -1 = 1. (F)
A equação 2x - 5 = 1 não possui raiz em U, logo V = Ø.